Lecture 9. Introduction: Second-Order Linear

Equations

1. Review: Definition of second-order linear equations

Recall a linear second-order equation can be written in the form

A(z)y" + B(z)y' + C(z)y = F(x)

We assume that A(z), B(z), C(x) and F(z) are continuous functions on some open interval I.

For example,

x, I

e“y" + (cosz)y + (1++vx)y =tan 'z

is linear because the dependent variable y and its derivatives ¥’ and y” appear linearly.

The equations
y' =yy and ' +2(y)° +4y° =0

are not linear because products and powers of y or its derivatives appear.

(1)



2. Homogeneous Second-Order Linear Equations

If the function F'(z) = 0 on the right-hand side of Eq. (1), then we call Eq. (1) a homogeneous linear
equation; otherwise, it is nonhomogeneous. In general, the homogeneous linear equation associated with Eq.

(1)is
A(z)y" + B(z)y' + C(x)y =0 (2)
For example, the second-order equation
2z%y" + 2xy' + 3y = sinz
is nonhomogeneous; its associated homogeneous equation is
222%y" + 2z + 3y =0
Consider
A(z)y" + B(z)y' + C(z)y = F(z)

Assume that A(x) # 0 at each point of the open interval I, we can divide each term in Eq. (1) by A(x) and
write it in the form

y' +p(@)y +a(z)y = f(z)
We will discuss first the associated homogeneous equation

y" +p(x)y + q(z)y =0 (3)



Recall the Eq (3)

y" +p(z)y + q(z)y =0 (3)

Theorem 1 Principle of Superposition for Homogeneous Equations

Let y1 and y3 be two solutions of the homogeneous linear equation in Eq. (3) on the interval I. If c;and ¢ are
constants, then the linear combination

Y = Cc1y1 + C292

is also a solution of Eq. (3) on I.

Idea of the proof:
Since y; and y» are both solutions to Eq(3), we have
y1 +p(2)y + a(z)y1 = 0and y5 + p(z)ys + g(z)y2 = 0
Multiply the equtions by c; and co, respectively, we have
c1y] + p(x)eryy + g(z)cryr = 0and ey + p(z)cayh + q(z)cay2 = 0
Add the two equations above together, we have
(cry1 + caya)” + p(x)(c1y1 + c2y2)" + q(z) (crys + caya) =0

Therefore, y = c1Yy1 + c2y2 satisifies Eq. (3), thus y = ¢1y1 + c2y2 is also a solution to Eq. (3).

Application of Theorem 1. In Example 1, a homogeneous second-order linear differential equation, two
functions y1 and y2, and a pair of initial conditions are given. First verify that y1 and y2 are solutions of the
differential equation. Then find a particular solution of the form y = ¢1y1 + c2y» that satisfies the given initial
conditions.
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Theorem 2 Existence and Uniqueness for Linear Equations

Suppose that the functions p, g, and f are continuous on the open interval I containing the point a. Then, given
any two numbers by and by, the equation

y' +p(@)y +q(z)y = f(z)
has a unique (that is, one and only one) solution on the entire interval I that satisfies the initial conditions

y(a) = by, y'(a) = by.

3. Linear Independence of Two Functions

Two functions defined on an open interval I are said to be linearly independent on I if neither is a constant
multiple of the other. Two functions are said to be linearly dependent on an open interval if one of them is a
constant multiple of the other.

For example, the following pairs of functions are linearly independent on the entire real line

raph of sin(2x) and sin(x)cos(x) from -3 to 31

/\ / \ ) e” and ze”
> \/ \/ \/ z+1and z°

i

sinz and cosx

wiradions)

The functions f(z) = sin 2z and g(x) = sinx cos x are linearly dependent.
Juo = 2 sinx cos x ~3§00)

We can compute the Wronskian of two functions to determine if they are linearly independent (or
dependent).

Given two functions f and g, the Wronskian of f and g is the determinant

\f g

W(f,9) = 7 | =7rd —fg.

For example,

. cosx sinzx .
W(cosz,sinz) = —cos’z +sin’z =1

—sinx coszx

and
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Theorem 3 Wronskians of Solutions
Suppose that yi1and y2 are two solutions of the homogeneous second-order linear equation
y' +p(@)y +q(z)y =0 (3)

on an open interval I on which p and g are continuous.
(a) If y;and ys are linearly dependent, then W (y1,y2) = 0 on 1.
(b) If y1and ys are linearly independent, then W (y1, y2) # 0 at each point of 1.

Theorem 4 General Solutions of Homogeneous Equations
Let y; and y; be two linearly independent solutions of the homogeneous equation Eq. (3)
y' +p(@)y +q(z)y=0

with p and ¢ continuous on the open interval I. If Y is any solution whatsoever of Eq. (3) on I, then there exist
numbers c; and ¢y such that

Y(z) = c1y1(z) + caya(x)

forall z in I.

Remark. We call {y1, y2} a fundamental set of the Eq (3).

Example 2. It can be shown that y; = e*® and y, :a:_e‘h’ are solutions to the differential equation
dy _dy B
(1) Compute W (y1, y2) .
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(2) Based on the resultin (1), c;y1 + c2ys is the general solution to the equation on the

interval_(— 60, Q)
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Exercise 3. It can be shown that y; = 2% sin(9z) and y» = €% cos(9z) are solutions to the differential

equation D*y — 4Dy + 85y = 0 on (—00, 00).
(1) What does the Wronskian of y1, y» equal on (—o0, 00) ?

(2)1s {y1,y2} a fundamental set for D?y — 4Dy + 85y = 0 on (—00, 00)?

Solution.
M

Y1 Y2
W(y17 y2) =1 /

Y1 Y

e2® sin(9z) e® cos(9z)
N (e*® sin(gx))/ (e* cos(gz))/
e? sin(9z) e® cos(9z)

(2sin(9z) + 9 cos(9z))e*® (—9sin(9z) + 2 cos(9z))e*

= (e**sin(9z)) - ((—9sin(9z) + 2 cos(9z))e**) — (e** cos(9z)) ((2sin(9z) + 9 cos(9z))e*”)
= —9¢*(sin?(9z) + cos?(9z))

— _ge4x

(2) Yes, since W (y1,y2) # 0 on (—00,00)



Exercise 4. For the differential equation ¥ + 4y’ + 13y = 0, a general solution is of the form
y = e 2% (Cysin 3z + Cy cos 3z), where C and Cs are arbitrary constants. Applying the initial conditions
y(0) = —2 and ¢’ (0) = 10, find the specific solution.

Solution.
Applying the initial condition y(0) = —2, we get,

y(0) = Cy = —2.
To apply the initial condition y'(0) = 10, first find ¢/ ().
Y (z) = e > (3C; cos 3z — 3Cy sin 3z) — 2e 2% (Cy sin 3z 4 Cy cos 3).
Therefore,
4/ (0) = 3C; — 2C; = 10.

This leads to the following two equations in terms of C7 and Cl,

Cy =2
3C; —2C% =10
Solving this system leads to C7 = 2 and Cy = —2. Therefore the specific solution is,

y = e 2%(2sin(3z) — 2cos(3x))



